Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract. Soil pore water (SPW) chemistry can vary substantially acrossmultiple scales in Arctic permafrost landscapes. The magnitude of thesevariations and their relationship to scale are critical considerations forunderstanding current controls on geochemical cycling and for predictingfuture changes. These aspects are especially important for Arctic changemodeling where accurate representation of sub-grid variability may benecessary to predict watershed-scale behaviors. Our research goal is tocharacterize intra- and inter-watershed soil water geochemical variations attwo contrasting locations in the Seward Peninsula of Alaska, USA. We thenattempt to identify the key factors controlling concentrations of importantpore water solutes in these systems. The SPW geochemistry of 18 locationsspanning two small Arctic catchments was examined for spatial variabilityand its dominant environmental controls. The primary environmental controlsconsidered were vegetation, soil moisture and/or redox condition, water–soilinteractions and hydrologic transport, and mineral solubility. The samplinglocations varied in terms of vegetation type and canopy height, presence orabsence of near-surface permafrost, soil moisture, and hillslope position.Vegetation was found to have a significant impact on SPW NO3-concentrations, associated with the localized presence of nitrogen-fixingalders and mineralization and nitrification of leaf litter from tall willowshrubs. The elevated NO3- concentrations were, however, frequentlyequipoised by increased microbial denitrification in regions with sufficientmoisture to support it. Vegetation also had an observable impact on soil-moisture-sensitive constituents, but the effect was less significant. Theredox conditions in both catchments were generally limited by Fe reduction,seemingly well-buffered by a cache of amorphous Fe hydroxides, with the mostreducing conditions found at sampling locations with the highest soilmoisture content. Non-redox-sensitive cations were affected by a widevariety of water–soil interactions that affect mineral solubility andtransport. Identification of the dominant controls on current SPWhydrogeochemistry allows for qualitative prediction of future geochemicaltrends in small Arctic catchments that are likely to experience warming andpermafrost thaw. As source areas for geochemical fluxes to the broaderArctic hydrologic system, geochemical processes occurring in theseenvironments are particularly important to understand and predict withregards to such environmental changes.more » « less
- 
            Abstract. Permafrost-affected ecosystems of the Arctic–boreal zone in northwestern North America are undergoing profound transformation due to rapid climate change. NASA's Arctic Boreal Vulnerability Experiment (ABoVE) is investigating characteristics that make these ecosystems vulnerable or resilient to this change. ABoVE employs airborne synthetic aperture radar (SAR) as a powerful tool to characterize tundra, taiga, peatlands, and fens. Here, we present an annotated guide to the L-band and P-band airborne SAR data acquired during the 2017, 2018, 2019, and 2022 ABoVE airborne campaigns. We summarize the ∼80 SAR flight lines and how they fit into the ABoVE experimental design (Miller et al., 2023; https://doi.org/10.3334/ORNLDAAC/2150). The Supplement provides hyperlinks to extensive maps, tables, and every flight plan as well as individual flight lines. We illustrate the interdisciplinary nature of airborne SAR data with examples of preliminary results from ABoVE studies including boreal forest canopy structure from TomoSAR data over Delta Junction, AK, and the Boreal Ecosystem Research and Monitoring Sites (BERMS) area in northern Saskatchewan and active layer thickness and soil moisture data product validation. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band airborne SAR data (https://uavsar.jpl.nasa.gov/cgi-bin/data.pl).more » « less
- 
            Abstract. This study investigates and compares soil moisture andhydrology projections of broadly used land models with permafrost processesand highlights the causes and impacts of permafrost zone soil moistureprojections. Climate models project warmer temperatures and increases inprecipitation (P) which will intensify evapotranspiration (ET) and runoff inland models. However, this study shows that most models project a long-termdrying of the surface soil (0–20 cm) for the permafrost region despiteincreases in the net air–surface water flux (P-ET). Drying is generallyexplained by infiltration of moisture to deeper soil layers as the activelayer deepens or permafrost thaws completely. Although most models agree ondrying, the projections vary strongly in magnitude and spatial pattern.Land models tend to agree with decadal runoff trends but underestimaterunoff volume when compared to gauge data across the major Arctic riverbasins, potentially indicating model structural limitations. Coordinatedefforts to address the ongoing challenges presented in this study will helpreduce uncertainty in our capability to predict the future Arctichydrological state and associated land–atmosphere biogeochemical processesacross spatial and temporal scales.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
